
Enabling Efficient Random Access
to Hierarchically-Compressed Data

Feng Zhang∗, Jidong Zhai†, Xipeng Shen‡, Onur Mutlu§, Xiaoyong Du∗
∗Key Laboratory of Data Engineering and Knowledge Engineering (MOE), and School of Information, Renmin University of China

†Department of Computer Science and Technology, Tsinghua University, BNRist
‡Computer Science Department, North Carolina State University

§Department of Computer Science, ETH Zürich
fengzhang@ruc.edu.cn, zhaijidong@tsinghua.edu.cn, xshen5@ncsu.edu, onur.mutlu@inf.ethz.ch, duyong@ruc.edu.cn

Abstract—Recent studies have shown the promise of direct
data processing on hierarchically-compressed text documents.
By removing the need for decompressing data, the direct data
processing technique brings large savings in both time and space.
However, its benefits have been limited to data traversal opera-
tions; for random accesses, direct data processing is several times
slower than the state-of-the-art baselines. This paper presents a
set of techniques that successfully eliminate the limitation, and
for the first time, establishes the feasibility of effectively handling
both data traversal operations and random data accesses on
hierarchically-compressed data. The work yields a new library,
which achieves 3.1× speedup over the state-of-the-art on random
data accesses to compressed data, while preserving the capability
of supporting traversal operations efficiently and providing large
(3.9×) space savings.

I. INTRODUCTION

Text analytics is the process of analyzing text documents
to discover useful information, draw conclusions, and assist
decision-making. It is important in many domains, from web
search engines to analytics in law, news, medical records,
system logs, and so on.

Text analytics is fundamentally based on two types of
operations on text, traversal operations and random accesses.
Traversal operations traverse the entire text corpus. Examples
include word count, inverted indexing, sequence count, and
so on. Text clustering, for instance, often works on the
result of inverted indexing; deep learning (e.g., LSTM [1] for
translation) often works on the results of word embedding.
Both inverted indexing and word embedding are traversal
operations.

Random accesses, on the other hand, require visiting arbi-
trary locations in a text document. They are no less common
than traversal operations. Examples include searching for a
particular word, extracting a segment of content, and counting
the frequency of a particular word or phrase.

Both kinds of operations face efficiency challenges for large
datasets. One way to deal with large datasets is compression.
Traditional compression methods, however, save storage space
but increase data processing time, as the data must be decom-
pressed before it can be processed.

Some recently-proposed compression techniques (e.g., Suc-
cinct [2]) try to avoid the need for data decompression
before processing. However, these methods are designed for

random accesses and do not work efficiently on traversal
operations [2], [3].

A recent promising technique [3], [4] leverages hierarchical
compression (i.e., the Sequitur algorithm [5]) to enable effi-
cient traversal operations directly on compressed data with-
out requiring decompression. The corresponding technique,
TADOC (Text Analytics Directly on Compression), yields
significant savings in both space (10×) and time (2×) for
traversal operations [5].

Unfortunately, the benefits of TADOC disappear in the
presence of random data accesses, due to the hierarchical
compressed format of the data. A simple search for a particular
word, for instance, becomes a time-consuming graph traversal:
it takes seven seconds on a hierarchically-compressed two-
gigabyte data using TADOC, five times longer than a simple
sequential search on the original uncompressed data.

To avoid such slow handling of random accesses, TADOC
needs to decompress the data first. Once data is decompressed,
space saving benefits disappear. Recompression after random
accesses is not a satisfying solution due to the long com-
pression time. TADOC, for instance, takes over 20 hours to
compress a 300GB dataset [3].

Moreover, TADOC does not support cases where new
content is being continuously added to the dataset, while
Succinct [2] supports only append operations to add new
content to a dataset.

As such, two important open questions are 1) whether
random accesses to hierarchically-compressed data can be
made efficient and 2) whether the limitations on compressed
dataset updates can be eliminated. Positive answers to the
questions would eliminate the last major barriers for practical
adoption of direct text analytics on compressed data.

This paper presents our solution, which consists of two
major technical innovations. Our first innovation is a range
of carefully designed indexing data structures. Our design
enables reusability across analytics operations, and strikes
a good balance between space cost and efficiency through
these indexing data structures. Our second innovation is a
set of algorithmic optimizations that enable random accesses
to work efficiently on compressed data. These optimizations
help maximize the performance of random data accesses by
effectively leveraging the indexing data structures, incremental

updates, recompression, and graph coarsening. We implement
our techniques on TADOC, and show that they enable TADOC
to achieve 3.1× speedup over the state-of-the-art (Succinct [2])
on random data accesses over compressed data, with or
without continuous data growth. Our solution, at the same
time, preserves 1) TADOC’s unique capability of efficiently
supporting traversal operations on compressed data and 2)
most of TADOC’s space reduction benefits, achieving 3.9×
space savings compared to the original compressed datasets.

Overall, this work makes the following contributions:
• For the first time in literature, it provides a feasible and

effective method for enabling efficient random access on
hierarchically-compressed data.

• It delivers the first solution that can efficiently support
direct text analytics on compressed data for both random
accesses and traversal operations.

• It identifies five common types of random accesses in text
analytics via analysis of a set of real-world text analytics
workloads, and proposes a collection of techniques to
efficiently support these operations on hierarchically-
compressed data.

• It compares our techniques with the state-of-the-art,
demonstrating its benefits in eliminating the last major
barrier against the practical adoption of direct text ana-
lytics on compressed data.

II. BACKGROUND

This section provides background on hierarchical compres-
sion and the previous technique, TADOC [3], [4], which
leverages hierarchical compression for direct processing on
compressed data.

TADOC uses a lossless hierarchical compression algorithm
called Sequitur [5]. This recursive algorithm represents a
sequence of discrete symbols with a hierarchical structure.
It derives a context-free grammar (CFG) to describe each
sequence of symbols: A repeated string is represented as a
rule in the CFG. By recursively replacing the input strings with
hierarchical rules, Sequitur produces a more compact output
than the original dataset. For a set of text files, TADOC first
adds some unique splitting symbols (called splitters) between
files to mark their boundaries, and then applies Sequitur to
build a CFG. The CFG is often several times smaller than the
original data. It can also be represented as a directed acyclic
graph (DAG).

Figure 1 provides an example. Figure 1 (a) shows the
original input data: there are two files, file0 and file1,
separated by SPT1, and wi represents a word. Figure 1 (b)
presents the output of TADOC in CFG form, which illustrates
both the hierarchical structure and the repetition in the original
input. It uses R0 to represent the entire input, which consists of
two files, file0 and file1, represented by R1 and R2. The
two instances of R2 in R1 reflect the repetition of "w1 w2" in
the substring of R1, while the two instances of R1 in R0 reflect
the repetition of “w1 w2 w3 w1 w2 w4” in file0. The
output of TADOC can be visualized with a DAG, as Figure 1
(c) shows, where edges indicate the hierarchical relations
between rules. TADOC uses dictionary encoding to represent

each word and rule with a unique non-negative integer, as
shown in Figure 1 (d). It stores the mapping between integers
and words in a dictionary. It assigns each rule a unique integer
ID that is no smaller than N (N is the total number of unique
words in the dataset; integers less than N are IDs of the words
in the dictionary). Figure 1 (e) shows the CFG of Figure 1 (b)
in numerical form.

R2:

R1:

R0:R0 → R1 R1 SPT1 R2 w1
R1 → R2 w3 R2 w4
R2 → w1 w2

file0: w1 w2 w3 w1 w2 w4
w1 w2 w3 w1 w2 w4

file1: w1 w2 w1

Input: file0

(a) Original data (b) TADOC compressed data

(c) DAG Representation

R1 R1 SPT1

R2 w3 R2 w4

w1 w2

w1: 0 w2: 1 w3: 2
w4: 3 R0: 4 R1: 5
R2: 6 SPT1: 7

(d) Numerical
representation

4 → 5 5 7 6 0
5 → 6 2 6 3
6 → 0 1

(e) Compressed data
in numerical form

R2 w1

Rules:
file1

Fig. 1. A compression example with TADOC.

TADOC focuses on traversal operations in text analytics; it
employs graph traversal on the DAG for those operations. We
use word count as an example to illustrate how TADOC
works. As Figure 2 shows, TADOC traverses the DAG in a
bottom-up manner, counting the frequency of each word in
each node it visits and the frequency of the words in the
node’s children. For example, when processing R1 in Figure 2,
TADOC counts w3 and w4 locally, and obtains the frequency
of w1 and w2 by multiplying their frequencies in R2 by
the number of appearances of R2 in R1. The traversal starts
from leaf nodes and stops when it reaches R0. By leveraging
the hierarchical structure of the compression format, TADOC
avoids repeatedly counting text segments that appear many
times in the input dataset, and hence can achieve significant
time savings for traversal operations besides space savings for
storing the dataset.

w1: 2×2 + 1 +1 = 6
w2: 2×2 + 1 = 5
w3: 1×2 = 2
w4: 1×2 = 2

<w1,2>, <w2,2>
<w3,1>, <w4,1>

R0: R1 R1 R2 w1

R1: R2 w3 R2 w4

R2: w1 w2

w1: 1×2 = 2
w2: 1×2 = 2
w3: 1
w4: 1

<w1,6>, <w2,5>, <w3,2>, <w4,2>

CFG Relation
Information Propagation

SPT1

Step 1Step 2

Step 3

<w1,1>, <w2,1>

Fig. 2. An example of counting word frequencies with TADOC.

Although TADOC provides good performance, it is not
efficiently applicable to all text analytics queries. Specifically,
such compression-based analytics techniques do not support
random accesses. First, hierarchical compressed data process-
ing organizes data into a DAG, targeting only tasks that can be
efficiently transformed into a DAG traversal problem. Second,
as discussed in [3], TADOC is designed for datasets that
are repeatedly used for many times without changes; when
users want to perform insertion of new content, they would
need to perform decompression first, and then recompress
the data after the insertion of the new content. Compression
with Sequitur takes a lot of time: 20 hours for compressing a
300GB dataset [3]. In this work, we aim to provide solutions
to overcome these limitations.

III. OPERATIONS TO SUPPORT AND CHALLENGES

This section first describes the types of important random
accesses that we have identified in our workload analysis,
and then discusses the challenges for supporting such random
access types on hierarchically-compressed data.

A. Operations to Support
To identify the most important random access operations

to support for text analytics, we have surveyed a set of
domains where text analytics is essential, including news, law,
webpages, logging, and healthcare. Our exploration leads to
the following observations:

• Many uses of these text datasets involve several basic op-
erations, search, extract, and count. For instance,
in the news domain, data analysts locate relevant news
events together to analyze their relationships by searching
certain keywords [6]; in legal affairs, people may search
and extract useful content from a large collection of law
records [7], [8]; for webpages, searching or counting
specific words, and extracting certain content are common
operations [9], [10].

• In many domains, datasets are subject to the addition
of new content. For instance, as news is continuously
produced every day, the latest news could need to be
appended to the existing news datasets. Rapid addition
of new content is also important in IoT systems, which
are organized in a decentralized structure and where
many large logs are generated everyday [11]. Similarly,
in healthcare, as more medical records are produced for
a patient, they may need to be inserted into the existing
collection of medical records [12], [13] (assuming records
from many patients are stored as a whole).

• Deletion or replacement, on the other hand, is not com-
mon in the domains we examined. These datasets usually
consist of data that has long-term value. Even though, due
to space constraints, some old content may get moved to
some other storage (e.g., tape), deletion or replacement
are not common.

Based on these observations, we identify the following five
types of random accesses as the essential ones to support for
text analytics (in addition to the traversal operations prior work
has already covered [3]). It is worth noting that Succinct [2],
another efficient query processing engine designed for per-
forming fast random access on compressed data, supports a
similar set of operations, except insertion (Succinct can insert
data only via append, which is limited).

• extract(file,offset,length). This operation returns a string
of a given length of content at the offset in the file.

• search(file,word). This operation returns the offsets of all
appearances of a specific word in a given file.

• count(file,word). This operation returns the number of
appearances of a specific word in a given file.

• insert(file,offset,string). This operation inserts the input
string at the offset of the file.

• append(file,string). This operation appends a string at the
end of the file, which is much simpler than insert.

To support these five types of random accesses, we observe
several principles:

• Locality. As these operations are random accesses to
a specific word or text segment, the provided support
should avoid the traversal of the DAG to find the place
of interest. Such support should offer the capability to
quickly locate the specific places in the dataset to operate
on.

• Compatibility. The developed support should not only
enable TADOC to perform these operations efficiently,
but also preserve the capability of TADOC to support
efficient traversal operations. This principle implies that
the basic data structure of TADOC (i.e., the DAG from
Sequitur) should stay as the main representation of the
compressed dataset.

• User Transparency. To use these supported operations,
users should not need to be concerned about how to
implement them in their compressed datasets, but simply
invoke some existing module’s APIs. This principle is
important for the practical usability and adoption of the
developed support.

Achieving these goals on hierarchically-compressed datasets
requires overcoming multiple challenges, as we discuss next.

B. Challenges
1) Hierarchical Structure of the DAG: The first is the

hierarchical structure of the compressed data. In the DAG
of Sequitur, one node (which corresponds to one rule in the
CFG) could have multiple parents that belong to different files.
An example is node R2 in Figure 1 (c). The node has two
incoming edges, respectively from R1 and R0. The edge from
R1 to R2 comes from some elements in file0, while the else
from R0 to R2 comes from some elements in file1. Now
consider the case where a user needs to quickly count how
many times a word appears in a certain file in the compressed
dataset. Starting from the root of the DAG and traversing the
entire DAG to locate the word is apparently inefficient. A
natural way to increase efficiency is to build up index ahead of
time, recording the relations between each word and each rule.
However, that index is not going to solve the problem: even
if we find out that w1 appears in both R0 and R2 in Figure 1
(c), using the index, we still cannot tell how many times the
word appears in file2 as rule R2 belongs to multiple files.

2) Uni-Directionality: Second, currently, TADOC is unable
to traverse the DAG from other nodes except the root node,
since the DAG is a uni-directional data structure. Even if an
indexing data structure allows us to immediately locate a node
of interest, it is difficult to identify the node’s sister nodes in
the same file, as there are no edges going back to the parent
of a node; even if there were, the node of interest may have
multiple parents that belong to different files. For example,
when we begin traversing from R2 in Figure 1 (c), we do not
know which node to visit next.

3) Special Complexities on Insert: Third, the hierarchical
structure of the DAG imposes special complexities on the
insert operation. As listed in Section III-A, insert places a
new string at some offset in a file. The first step of insert

is to efficiently locate the rule that contains the offset. The
second step is to insert the string at that location. However,
each rule represents a repeated string that appears more than
once; if we directly insert the content into the rule that has
one appearance corresponding to the desired offset, the same
string would be, at the same time, inserted at other offsets
where the rule appears. For instance, suppose that one wants
to insert "w7" right after the third word in file0 in Figure 1.
If we insert it directly into rule R1 after "w3", the consequence
would be that file1 now has "w7" inserted twice, at each of
the places where R1 appears (as shown in the content of R0).

4) Tradeoff between Space Savings and Time Cost: The
fourth challenge is the tradeoff between space savings and time
cost. One advantage of supporting analytics on compressed
data is that we can enjoy space-saving benefits and also high
performance at the same time, as previous work [3] has shown.
However, to support efficient random access, some indexing
data structures may have to be added. If the new data structures
incur large space overhead, the advantage of the technique will
reduce. Therefore, an important challenge is how to design the
new data structures such that they can maximize the processing
speed while minimizing any negative effects on space.

IV. OUR SOLUTION
A. Design Overview

To address the challenges against efficient random access
on hierarchically-compressed data, we develop a series of
novel techniques. Figure 3 illustrates the main challenges
and our solution techniques. The first technique supports
local graph walks (or partial traversals) starting from any
place of interest in the DAG. This technique is essential for
the extract operation (Section IV-B). The second technique
builds efficient indexes between words and offsets in the
DAG, which capture the complex relations among words,
rules, and offsets. These indexes are especially useful for
search and count operations (Section IV-C and IV-D). The
third technique supports incremental dataset updates on the
hierarchical compressed data. This technique makes efficient
insert and append operations possible (Section IV-E and IV-F).
We further consider graph coarsening as an optimization to
save space cost (Section IV-G3).

Direct processing on
compressed data

Five Operations to Enable
Random Access on Compressed Data

extract

search
count

insert

append

hierarchical
structure of
the DAG uni-directionality

tradeoff
between space

savings & time costspecial complexities
on insert

Challenges: Four Sources of Complexity

Solution Techniques: Five Data Structures

word2rule rule2location rootOffset bitmap records

Fig. 3. Challenges against enabling random access to hierarchically-
compressed data and our proposed solution techniques.

These techniques are not independent of each other; they
work synergistically to address the various complexities in all

types of random accesses. When designing the extra data struc-
tures required for each technique, we keep space overheads
in mind and try to make a newly-introduced data structure
useful for more than one type of operation. Specifically, we
introduce five data structures, which we briefly explain below.
We provide more detail on each data structure when we explain
our techniques for each of the five random access types.

• rule2location. This data structure provides the mapping
from each rule to the locations (the files and the offsets)
where the string represented by the rule appear in the
input data (Section IV-B).

• word2rule. This data structure provides the mapping from
words to rules. For a given word, word2rule returns the
set of rules the word appears in (Section IV-C).

• rootOffset. This data structure provides the offset of each
element from the root rule (Section IV-E).

• bitmap. This data structure indicates whether or not an
element in a rule has been changed (Section IV-E).

• records. This data structure stores the new content (Sec-
tion IV-E).

These five data structures are designed to help address the
challenges we described in Section III-B.

To address the first challenge of hierarchical structure of the
DAG, word2rule and rule2location build the relation between
words and offsets; given a word, we can quickly find its offsets
in any document (we do not consider a potential word2location
data structure due to its storage overheads).

To address the second challenge of uni-directionality, using
the first three data structures, rule2location, word2rule, and
rootOffset, we can perform local graph walks rather than
traversing the graph from the beginning location for each
random access.

To address the special challenge on insert, the bits in bitmap
are used to indicate whether new content is added in each
location, and the new content can be stored separately in
records. These two data structures ease the handling of new
content as a post-processing step.

Finally, to save space cost, these data structures are selec-
tively stored. The largest data structure, rule2location, is not
stored on disk but created on the fly when compressed data is
loaded into memory.

We show an example of the relationships between these five
data structures in Figure 4. Rule2location and bitmap are node-
level data structures, which means that each node has its own
instance of the two data structures. The other data structures
are DAG-level data structures; i.e., there is only one instance of
them for a given DAG. Data structure rootOffset is embedded
in the root node. Among these data structures, only rootOffset
is created on the fly while data is being loaded; the others are
stored on disk. Section IV-F provides more details.

Next, we explain in detail how our proposed techniques
support each of the random access types.

B. Extract
This operation extracts content directly from a compressed

file. It is a basic operation required for reading data in

R0: R1 R1 R2 w1

R1: R2 w3 R2 w4

R2: w1 w2

SPT1

rule2location
bitmap

rule2location

rule2location

bitmap

bitmap

rootOffset

word2rule

records

Data structure that appears
in each node

Data structure that has only
one instance in the DAG

Fig. 4. Relationships between our new data structures.

compressed format for general types of analytics queries, since
most queries first need to obtain the data.

Naive traversal-based approach. The most straightforward
approach to designing the extract operation is to 1) traverse
the DAG and record the length from the beginning, and
2) after reaching the starting location, extract the requested
content. However, in this method, we need to search from the
beginning of the root (R0) for each extract operation, which
is prohibitively time-consuming. Therefore, we avoid such a
design and instead develop two different approaches.

Our First Approach, a coarse-grained method. A more effi-
cient method is to build indexes for the DAG. For each extract
operation, we search the index of rule2location first, and then
begin the traversal. However, a challenge blocks the partial
traversal: the DAG does not provide pointers from children
to parents (Section III-B2). To demonstrate this challenge, we
use the example shown in Figure 5. Assume that we start the
extract operation in R4 of file1, we do not know which
rule we should continue to traverse after we finish scanning
R4 due to uni-directionality. Note that only the root node does
not have parents, and thus does not exhibit this challenge.
Therefore, we first propose a coarse-grained method to keep
the offset of each element at the root as our index. The core
idea is to build a small number of indexes to save some of
traversal operations in the DAG, and for an extract operation,
we start traversal from an element in the root whose index is
close to the required offset. For example, when the content in
R4 of file1 is required, we can traverse directly from R2
of file1 in the root instead of the beginning of the root.

R1 R2 w1 SPT1 R2w2 SPT2 R3

root node

… w4 …

…

children

file0 file1 file2

w5 R4R1: R4R2:

w6 w7R4: w8

R4 R5R3:

w6 w8R5:

…

…

w5

Fig. 5. An example of DAG representation for “w5 w6 w7 w8 w6 w7 ...”.

Such an indexing mechanism is an example of range
indexing, which is a coarse-grained approach to extract. For
a given extract operation, we can quickly locate the nearest
starting position in the root, without traversing the DAG
from the beginning. However, this approach has a drawback:
unnecessary content from the index to the required offset still
needs to be scanned, which can actually be avoided. Recall
the example in Figure 5, and assume that we want to extract a
string in file1 and the starting position is in R4. Although

the index in the first approach suggests us to traverse from R2
of file1 in the root instead of the beginning, we still need
to scan the unrequested rule between the root and R4, which
is R2 in Figure 5. In real situations, there could be many such
unnecessary rules between the root and the target rule, which
causes significant time overhead.

Our Second Approach, a fine-grained method. To avoid the
unnecessary time cost in our first approach, we need to build an
index not only at the root, but also in subrules, so that we can
start traversal in subrules; we call this fine-grained indexing.
To tackle the challenge caused by the lack of pointers from
children to parents, we build a data structure to indicate the
relationships among rules.

Let us examine the challenge of how to maintain pointers
from children to parents. As Figure 5 shows, a child such as R4
can have multiple parents. The first challenge is how to record
the right parent to visit after the child has been traversed. The
parent may belong to different files (for example, in Figure 5,
R4’s parent R2 belongs to both file0 and file1), which
makes this more challenging. The second challenge is how to
jump back to the right location in the parent. For example, in
Figure 5, after R2 has been processed in file0, we need to
visit the third element (w1) in the root node, not the beginning
of the root. The third challenge is where to add the index data
structures, as different rules may have the same starting offset.
For instance, in Figure 5, both R2 and R4 have the same offsets
in file1; how to organize the index is a problem.

Detailed Design of Our Second Approach. Based on the
above analysis, we develop a new data structure, called rule
sequence, to provide the ability to index from children to
parents. To enable this optimization, we extract the relationship
among rules into a sequence, as shown in Figure 6. We use the
DAG in Figure 1 (c) of Section II for illustration, and assume
that the length of each word is two bytes. For each file, we
store the starting offset, and start and end locations as a unit
in each rule, into the ruleSequence data structure. When rule
shifting (i.e., traversing across different rules) happens, this
rule sequence provides the necessary information to enable
the ability to index from children to parents, which enables us
to traverse forward and backward freely at any location of the
DAG. We store this data structure in memory.

This design provides the pointers from children to parents,
which can help us perform extraction directly from a subrule.
To extract a piece of content, we can use binary search among
offsets to quickly locate the starting unit; then, after we locate
the starting unit, instead of DAG traversal, we go through the
related rules with the help of the ruleSequence data structure
until we obtain the required content.

Algorithm 1 shows our second approach (Approach 2) for
extract. We first use binary search to locate the starting unit
(denoted as startUnit) in line 2. Then, we traverse the rule
sequence from startUnit until we reach the unit that covers
the requested content, as shown in lines 4 to 6. The adjust()
function in line 7 adjusts the offset and the starting location,
because the requested offset start may not exactly match the
offset of the located unit (startUnit). For the units within

R0: R1 R1 R2 w1

R1: R2 w3 R2 w4

R2: w1 w2

SPT1
Rule: R2

Start: 0 End: 1

Offset: 0

Rule: R1

Start: 1 End: 1

Offset: 4

Rule: R2

Start: 0 End: 1

Offset: 6

Rule: R1

Start: 3 End: 3

Offset: 10

…

Rule: R j

Start: m End: n

Offset: i

Rule sequence

Relation from
children to parents

CFG relation

Rule sequence
mapping

Fig. 6. Illustration of the rule sequence data structure for indexing. Assume
the length of each word is two bytes.

the range from startUnit to endUnit, we sequentially add the
elements from related parts of rules to the results, as shown
in lines 8 to 12.

Algorithm 1 Extract len bytes from start in file f (based on
our second approach)
1: function extract(f, start, len)
2: startUnit = locate(ruleSequence[f], start)
3: end = start+ len
4: endUnit = startUnit
5: while ruleSequence[f][endUnit].end<end do
6: endUnit++
7: adjust(start, end, startUnit, endUnit, ruleSequence[f])
8: for each unit i in ruleSequence[f] from startUnit to

endUnit do
9: startElement = ruleSequence[f][i].start

10: endElement = ruleSequence[f][i].end
11: for each element j in rule[i] from startElement

to endElement do
12: output.push_back(rule[i][j])
13: return output

C. Search
We provide an efficient design for the search operation,

which returns the locations of occurrence of a given word.
Different from the extract operation, the returned content
of search may appear at any offset in a file. Therefore, it
is necessary to create an efficient mapping from words to
locations. A classic index for traditional document analytics is
a mapping from words to the original documents, but such an
index does not work in our hierarchical compressed format.
The reason is that the document is represented by hierarchical
rules in a DAG, and a rule can appear at multiple different
locations in the original document. For example, in Figure 5,
R4 appears at four locations in the original document, which
indicates that the words in R4 have at least four related
indexes. To build an efficient index in such a situation, we need
to build the relations from words to rules, and then consider
how to build the mapping from rules to locations, which is
a complex two-step mapping instead of directly building the
mapping from words to locations. On the other hand, the
hierarchical representation also brings opportunities: a rule can
be reused in many locations of the original document, so we
can leverage such redundancy to build efficient indexes for the
search operation.

Our Approach. Recall the data structures of word2rule and
rule2location from Section IV-A. We can reuse these data

structures to obtain the locations of a given word. First, we
obtain the rules that contain the requested word via word2rule.
Second, we use rule2location to calculate the exact offsets of
the requested word in a file. Our detailed design follows.

Detailed Design. We show the pseudo-code of our search
operation in Algorithm 2. Search provides the offsets of a
given word in a given file. The data structure word2rule
contains the mapping from words to rules, so search first
checks the related rules for the word, which avoids unnec-
essary traversal. If the returned rule is the root, we need to
traverse its elements via file splitters (lines 3 to 11), because
only the elements in file f are necessary. During the traversal,
we do not need to go into the subrules in root, but only add the
length of these subrules to the offset (line 11). If the returned
rule is not the root (lines 12 to 25), we need to scan the
rule. Note that we need to verify whether or not the rule has
been updated in the file before scanning. If so, we update
the rule’s location information (line 14). Each rule may have
more than one location (location contains file, starting offset,
and ending offset information). For example, in Figure 5, R4
has four locations: two in file0, one in file1, and one
in file2. During rule scanning, we store the rule’s starting
offset in offsetTmp first, and then when we locate the word, we
add the word’s local offset in the rule to the locations of the
elements in offsetTmp (lines 22 to 23). Finally, we examine
the records data structure for further processing (line 26), since
the new content added by insert or append may also contain
the requested word (detailed in Section IV-E and IV-F).

Algorithm 2 Search word in File f
1: function search(f, word)
2: for each i in word2rule[word] do . i is a rule
3: if (i == root) then
4: rootStart = splitLocation[f]
5: rootEnd = splitLocation[f + 1]
6: offset = 0
7: for each element k from rootStart to rootEnd do
8: if (k == word) then
9: output.push_back(offset)

10: else
11: offset+ = length(k) . k can be a word or a rule
12: else
13: set offsetTmp
14: checkUpdateSearch(f, i)
15: for each element j in rule2location[i] do
16: if (j.file == f) then
17: offsetTmp.push_back(j.start)
18: offset = 0
19: if (offsetTmp.size) then
20: for each element m in rule[i] do
21: if (m == word) then
22: for each element loc in offsetTmp do
23: output.push_back(loc+ offset)

24: else
25: offset+ = length(m). m can be a word or a rule
26: checkRecords4Search(records, f, word, output)
27: return output

Optimizations. We perform optimizations to make Al-
gorithm 2 more efficient. We have mentioned two data
structures in search, word2rule and rule2location, where
word2rule is relatively simple. We describe the optimization

of rule2location, which involves index mapping and storage
format optimizations. The original index format for each rule
is shown in Figure 7. The first element, total, stores the
number of entries for a rule, and each entry contains three
elements: file_i, start_i, and end_i, where file_i denotes the
file ID the rule belongs to, and start_i and end_i denote the
starting and ending positions of the rule in file_i. Because each
rule may appear at different locations across different files, the
number of entries can be large. To save space, we provide two
optimizations. First, a rule may appear many times in one file,
so we do not need to store file_i many times; instead, we store
file_i once, and then follow the number of entries (start_i and
end_i) in the file. Second, the length of a rule is fixed, so we
do not need to store both start and end for all entries; instead,
we store the length of the rule as length, and store only the
starting location for each entry. Besides these optimizations,
coarsening, an optimization technique that reduces the number
of rules, also helps to make indexes more compact, as we
discuss in Section IV-G3.

Original:

file1 start1 end1 file1 start2 end2 file1 start3 end3 …total

Optimized:

file1 num1 start3total start2start1 …length

start i
Start
location

total
Total number
of locations

file i
File
information

end i
End
location

Entry 1 Entry 2 Entry 3

length Length of the rule num i The number of entries in file i

Fig. 7. Illustration of rule2location optimization.

D. Count

In this part, we discuss the design and insights of the count
operation, which counts the occurrences of a certain word in
a file. It differs from word-counting in prior work [3], [4]
which, via traversal-type processing, counts the frequencies of
all words. We develop two approaches to the implementation
of count.

Our First Approach, the basic method. Given our design for
the search operation in Section IV-C, we can easily develop
count based on search with little change: count does not
need to store the offsets for a word; instead, it only counts
the occurrences of a given word, so we discard the offset
information for the word. We regard this design as our basic
method, and we predict that it has similar performance to
search. This basic method uses the data structures in search,
where offset information is unnecessary for the purposes of
count, so we can further optimize the data structures for count.

Our Second Approach, the optimized method. To optimize
the operation of count, we first review the data structures
word2rule and rule2location. If we can obtain all the necessary
information for count from these two data structures, we then
circumvent the DAG traversal overhead. Recall that the goal
of word2rule is to maintain a rule set for each word. We
can also integrate the frequency of words to each rule in
this set, so the new format of word2rule is: < wordi, set <
(rulea, freqa), (ruleb, freqb), ... >>, where freqj refers to
the frequency of wordi in rulej . Next, with the help of
rule2location, we can quickly obtain the rule frequency in

each file (as “num i” in Figure 7 shows). In detail, to count
a word in a given file, first, we obtain the word’s local
frequencies in the rules where it appears. Second, for the rules
where the word appears, we obtain their rule frequencies in
the given file, and multiply the rule frequencies with their
associated local word frequencies. Third, the summation of the
multiplication results is the required word count. For example,
in Figure 5, we can directly obtain the word count for w5 in
file0 by accumulating its word frequency in R1 and R2
using word2rule and rule2location, without requiring a DAG
traversal.

Detailed Design of Our Optimized Method. Algorithm 3
shows our optimized algorithm for count. The data structure
ruleFreq stores the rule frequency in each file, and its format is
< rulei, set < (filea, freqa), (fileb, freqb), ... >>, where
freqj refers to the frequency of rulei in filej . Because the
root rule contains the file splitters (as shown in Figure 5),
we need to go through the root within the related file range
to count the specific word, as lines 3 to 8 show. Finally,
we examine the records data structure for further processing
(line 13) so that we can consider the newly-added content
(Section IV-E and IV-F). In Section VI-E, we compare our first
approach, the basic method (based on search), and our second
approach, the optimized method (Algorithm 3) in detail.

Algorithm 3 Count word in File f
1: function count(f, word)
2: for each i in word2rule[word] do . i.rule is a rule
3: if (i.rule == root) then
4: rootStart = splitLocation[f]
5: rootEnd = splitLocation[f + 1]
6: for each element k from rootStart to rootEnd do
7: if (k == word) then
8: output++ . output is the result
9: else

10: localWordFreq = i.freq
11: LocalRuleFreq = ruleFreq[i.rule][f]
12: output+ = localWordFreq ∗ LocalRuleFreq

13: checkRecords4Count(records, f, word, output)
14: return output

E. Insert

The insert operation has the highest complexity among the
five operations, because it changes data at an arbitrary location.
We have considered a variety of design options, but each
approach leads to several concerns.

The first option is to insert content directly into the DAG,
which looks simple and straightforward. However, the first
challenge is that, to be consistent with previous TADOC-
based applications, we should not involve new types of data
structures directly in the DAG; that is to say, we should still
use the previous data structures in TADOC (words, rules, and
splitters) to change the DAG. Unfortunately, because each
rule can be reused more than once, i.e., a rule can appear at
several offsets in the original file, we need to copy the rule that
requires insertion to a new rule, and then insert content into the
new rule. The second challenge is that, copying only one rule
is not enough; the parent of the rule also needs duplication
if it appears more than once. For example, in Figure 5, if

we plan to insert a string in R4 from file1, we 1) need to
duplicate R4 to a new rule where we insert the string; 2) next,
need to duplicate its parent, R2, to a new rule, and 3) then
change the new R2 to point to the duplicated R4. A similar
process is repeated for all parents of the changed rules, until
this recursive duplication process reaches a parent that appears
only once. Hence, if the inserted rule has parents in multiple
layers, this duplication process can incur large time and space
overheads. Therefore, we abandon this design option.

The second design option is to perform decompression first,
insert the content to the file in the decompressed format, and
then perform compression. However, this method also has sev-
eral drawbacks. First, the decompression and recompression
processes have a large time cost when insertions are frequent.
Second, the decompressed file size, which is the original file
size, could be very large, and the machines that conduct this
operation may not have enough space for such decompression.
Therefore, we also abandon this option.

Our Approach. For the aforementioned reasons, our new
design stores the newly-inserted content into a separate data
structure (called records, which consists of record instances)
instead of performing in-place insertion.

This design must address three complexities. The first com-
plexity is how to indicate an insertion in the DAG. To solve
this complexity, we introduce a bitmap data structure, where
a bit corresponds to an element (an element could be a word
or a rule) in the DAG, “1” indicating an insertion and “0” not.
The second complexity is how to represent an insertion in a
rule that appears at several locations. For example, in Figure 5,
R4 has two locations in file0, one location in file1, and
one in file2. We need additional information to indicate an
insertion at a file offset in this case. To address this complexity,
we store in the record data structure the starting offset of the
rule along with the location in that rule where the insertion
happens. This data structure provides the precise address of the
inserted content in the DAG. The third complexity is how to
handle multiple insertions at the same location in the DAG. To
tackle this complexity, we add a pointer data structure “ptr”
in record, which organizes all records inserted at the same
location into a linked list. The structure of record is as follows.

The Record Data Structure
struct Record{

int fileID; // file, such as file1
int fileOffset; //file offset to insert, such as 100
int ruleID; // the rule ID to insert, such as 0
int ruleLocation; //the inserted location, such as 2
int replaceWord; //the replaced word, such as w2
string content; //content string
int ptr; //the recordID inserted at the same place. Default is -1
int ruleStartOffset; //the starting offset of the rule to insert, such as 0

};

With the data structure recording the necessary information,
insert operates as follows. It first finds the offset in the first and
second steps, which uses the same way as in extract. It then
sets the corresponding bitmap and inserts the content into the
records. Finally, it updates the rootOffset buffer as the newly-
inserted content may change the starting offsets of some rules.

Insert Process

Let G be the graph representing compression results. Conduct
insert(f,offset,string):

(1) Locate the element via “f” and “offset” in root. If it is a word, go
to step (3).

(2) Traverse the rule to the location at “offset”.

(3) Insert the “string” to “records”, set the related bit to true, and
add a pointer to the record in the DAG.

(4) Update “rootOffset”.

F. Append

The append operation also changes data, but it is much
simpler than insert, because the new content needs to be
appended exactly at the end of a file. To help quickly find
the end of a file for appending, in our design, when loading
the compressed data, we record the last location of each file
of the DAG in another buffer. For this purpose, we use the
same data structure as in insert for the new content.

As our implementation makes no direct changes to the
DAG, it ensures that other analytics, including the traversal
operations [3], [4], can efficiently work on the DAG as usual.
A post-processing step is needed to process the newly-inserted
content. As the new content is stored in records without
compression, the post-processing can be easily implemented
by leveraging the bitmap and records data structures. Sec-
tion VI-D evaluates the performance impact of the post-
processing step on traversal operations.

G. Discussion

1) Recompression and Effect on Other Operations: For
both insert and append, by default, the newly-added content
is not compressed. When there is enough added content (the
threshold is customizable by users), recompression can be
invoked to compress all the old and new content together.
Ideally, recompression should happen when the system is idle
to avoid the performance impact of long recompression time
while keeping the benefits of compression. The threshold to
trigger recompression of data to incorporate the new data into
the DAG (called recompression frequency) depends on the
usage scenario and system settings. For instance, if new data
arrives fast and the system has a lot of idle time and com-
pute resources, recompression could happen more frequently;
otherwise, it could happen less frequently. The use of parallel
compression [14] can help reduce the compression time and
find the best recompression frequency. In our experiments,
for evaluation purposes, we use a simple policy as follows:
Recompression happens when the size of the records data
structure equals the size of the compressed data. How to
determine the best recompression frequency for an arbitrary
practical setting is a research topic that is worthy of future
exploration.

2) Summary of Data Structures: Table I summarizes the
data structures we use to support the five random access
operations. The data structures in the third column are loaded
into memory from disk, while the data structures in the last
column are generated during data loading. Extract and count,

as discussed in Section IV-B and IV-D, can be implemented
using two different approaches, which use different data struc-
tures.

TABLE I
SUMMARY OF OUR DATA STRUCTURES.

Operation Version Data Structures
LoadedFromDisk GeneratedInMem

extract Approach1 DAG/dictionary/rule2location
Approach2 DAG/dictionary ruleSequence

search DAG/dictionary/rule2location/word2rule
count Approach1 DAG/dictionary/rule2location/word2rule

Approach2 dictionary/word2rule/ruleFreq
insert DAG/dictionary/bitmap/records rootOffset
append DAG/dictionary/bitmap/records

3) Space Considerations: As stated in Section IV-A, we
introduce five additional data structures to efficiently support
random accesses. For word2rule, we already presented its
optimized format in Section IV-D. For rule2location, we have
shown its optimization in Figure 7 of Section IV-C. We have
also illustrated the records data structure in Section IV-E. The
other two, rootOffset and bitmap, are simple and straightfor-
ward. Among the five data structures, rule2location usually
has the largest size. We found that rather than storing it on
disk, it is better to build rule2location on the fly while loading
the compressed data. The other data structures are stored
on disk. To further save space for these five data structures,
we employ an optimization called coarsening [3]. Coarsening
merges some close-to-leaf subgraphs in the DAG to ensure that
each leaf node contains at least a certain number of elements.
It reduces the number of rules, and hence the size of our
additional data structures. We analyze its effect on both space
and performance in Section VI-E.

V. IMPLEMENTATION

We integrate our implementation of the support for the five
random access types into the CompressDirect (CD) [3] library.
In the new library, each operation is a separate module. Search
module returns offsets of a certain word; count module counts
the appearances of a given word; extract module extracts a
piece of content; insert module performs insertions; append
module appends data at the end of the dataset. For each
of these modules, we implement sequential and distributed
versions. The sequential version uses C++ and the distributed
version uses C++ and Scala in the Spark environment [15].
In addition to these five modules, we also integrate a prepro-
cessing stage to generate the necessary data structures, such
as word2rule, rule2location, rootOffset, bitmap, and records.

VI. EVALUATION

Focusing on the five types of random access operations
listed in Section IV, we evaluate the efficacy of the proposed
support, in terms of both time and space savings. We report
performance in both single-node and distributed environments.

A. Methodology
The baseline method we compare to is Succinct [2]. Suc-

cinct is the state-of-the-art method that supports random access
on compressed data. It adapts compressed suffix arrays [16],
[17] for data compression. As it is designed specifically for
such operations, it achieves the highest speed on random
accesses (but it is weak in efficiently supporting traversal

processings). Our comparisons to Succinct examine whether
our proposed support can make TADOC deliver comparable
performance to Succinct on random access operations. If so,
that would validate the promise of our techniques in making
our expanded CD library the first library that efficiently
supports both traversal and random access operations on
hierarchically-compressed texts. Because Succinct does not
have an insert operation, we use the insert function in the
C++ string class as our baseline for insert.

Our method is denoted as “CD”. As "CD" is based on
TADOC, we keep the inputs the same as those to TADOC [3],
where text documents are first compressed with Sequitur
and then compressed with Gzip [18]. During evaluation,
our method first recovers the Sequitur-compressed result by
undoing the Gzip compression, and then applies our direct
processing mechanisms on Sequitur-compressed data. Our
measured time includes both the time to recover Sequitur
results and the processing time required for the random access
operations. Note that even though preprocessing (such as data
recovery) takes time, e.g., 41 seconds for dataset A, it is not
a concern in practice, since its time cost is amortized over a
large number of operations (extract, search, count, insert, and
append) on the preprocessed data.

We automatically generate the inputs of the five types of
random access operations. For extract, we pick random offsets
in a file for extraction; the average length of extracted content
is 64 bytes. For search and count, we randomly select a word
from the vocabulary of a file. For insert, the offset is also
random, and the string to insert is composed of randomly
picked words from the dictionary; the average length of an
inserted record is 64 bytes. Our settings for append are similar.

Datasets. Our evaluation uses five datasets that were used
in previous studies [3], [4], shown in Table II. The first three
datasets, A, B, and C, are large datasets from Wikipedia [19],
which are used for evaluation on clusters. These datasets are
Wikipedia webpages that are based on the same webpage
template but that differ in content. Dataset D is NSF Research
Award Abstracts (NSFRAA) from the UCI Machine Learning
Repository [20], which is used for evaluating a large number
of small files. Dataset E is from the Wikipedia database [19].

TABLE II
DATASETS ("SIZE" IS OF THE ORIGINAL DATASETS).

Dataset Size File # Rule # Vocabulary Size
A 50GB 109 57,394,616 99,239,057
B 150GB 309 160,891,324 102,552,660
C 300GB 618 321,935,239 102,552,660
D 580MB 134,631 2,771,880 1,864,902
E 2.1GB 4 2,095,573 6,370,437

Platforms. For the distributed system experiments, we
use our Spark Cluster, a 10-node cluster on Amazon
EC2 [21], and process datasets A, B, and C. Each node has two
cores operating at a frequency of 2.3 GHz, is equipped with
8 GB memory, and its operating system is Ubuntu 16.04.5.
The cluster is built on an HDFS storage system. Our Spark
version is 2.1.0 while our Hadoop version is 2.7.0. Random
access operations are written in C++, and we connect the
operations to Spark via Spark pipe(). For Succinct, we use

its C++ implementation with some minor changes; we also
connect it to the Spark system.

For the sequential system experiments, we use our Single
Node machine and process datasets D and E. This machine
is equipped with an Intel i7-8700K CPU and 32 GB memory,
and its operating system is Ubuntu 16.04.6. We compare our
C++ implementation to Succinct’s C++ version with default
parameters.

B. Performance
1) Large Datasets: Figure 8 shows the throughput results

(in terms of operations per second) for large datasets A,
B, and C on the Spark cluster. In general, the five random
access operations experience much higher throughput with our
technique over Succinct. Search and insert have relatively low
performance, extract and count have medium performance,
while append has the highest performance. The reason is that
search and insert involve many data accesses and operations
on a large memory space, in both the compressed suffix array
representation of Succinct and our hierarchical compressed
representation. Count and extract do not have such overhead;
count can obtain all the necessary information from word2rule
and rule2location, and extract concentrates on only local areas
in the dataset. For append, because our representation contains
the locations of the end of files, new content can be appended
directly without the need for accessing other parts of the DAG.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

extract
search
count
insert
append

extract
search
count
insert
append

extract
search
count
insert
append

th
ro

u
g

h
p

u
t

(o
p

s/
s)

Succinct
CD

dataset Cdataset Bdataset A

Fig. 8. Throughput for extract, search, count, insert, and append on different
datasets on the Spark cluster.

Experiments show that our system consistently outperforms
Succinct for the five operations on three datasets. For instance,
CD achieves 234,764 extract operations per second on average,
outperforming Succinct by 1.4×. CD achieves 1,443 search
operations per second, outperforming Succinct by 1.5×. CD
achieves 347,670 count, 1,462 insert, and 47,755,960 append
operations per second, outperforming Succinct by 1.7×, 9.4×,
and 1.4×, respectively. On average, the overall throughput of
our proposed techniques is 3.1× of Succinct’s throughput in
a distributed environment.

Figure 9 shows the latency (in microseconds) of the five
operations on large datasets on the Spark cluster. We define
latency as the end-to-end time from when an operation starts
until the time it finishes. The append operation has the lowest
latency due to its simple algorithm; we store the appended
content in a separate record and point to the end of a file, as
described in Section IV-F. In contrast, the search and insert
operations have relatively high latency, due to their complex

interactions with the whole DAG. For the five operations, our
system provides much lower latency than Succinct on most
datasets: on average, CD reduces average operation latency
by 17.5% over Succinct (append drags down CD’s average
performance).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

extract
search
count
insert
append

extract
search
count
insert
append

extract
search
count
insert
append

la
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Succinct
CD

dataset Cdataset Bdataset A

Fig. 9. Latency for extract, search, count, insert, and append on different
datasets on the Spark cluster.

2) Small Datasets: Figure 10 depicts throughput results for
small datasets on the Single Node machine. On average,
our system provides 16× the throughput of Succinct. For count
on dataset D, our system has lower throughput than Succinct.
The reason is that dataset D contains a large number of files,
which means that the data structure ruleFreq of dataset D is
much larger than that of the other datasets. Obtaining the rule
frequency for a given file with this data structure costs more
time on dataset D than on the others, and our technique is less
efficient than Succinct in this single case.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

extract
search
count

insert

append

extract
search
count

insert

append

th
ro

u
g

h
p

u
t

(o
p

s/
s)

Succinct
CD

dataset Edataset D

Fig. 10. Throughput for extract, search, count, insert, and append on different
datasets on the Single Node machine.

C. Space Savings

We measure the space savings using the compression ratio
metric, which is defined as size(original)/size(compressed).
The space-saving results are shown in Table III. CD improves
on TADOC [3] via the new data structures, as mentioned in
Section IV-A, to support random accesses. The compression
ratio of the original TADOC is 6.5–14.1. The newly added data
structures inflate the space, decreasing the compression ratio
to 2.6–5.0. The average compression ratio we observe is 3.9,
which is still much more compact than the 1.8 compression
ratio of Succinct.

Among the data structures used in our evaluation, two
data structures, ruleSequence and rootOffset, are created on
the fly in memory when data is being loaded. Two data
structures, bitmap and records, do not need to be stored on

TABLE III
COMPRESSION RATIOS.

Dataset
Version A B C D E AVG
Uncompressed 1.0 1.0 1.0 1.0 1.0 1.0
Succinct [2] 2.2 1.7 1.6 2.9 2.2 1.8
Original TADOC [3] 14.1 13.3 13.1 6.5 11.9 11.8
CD 4.9 3.5 3.5 2.6 5.0 3.9

disk because initially no insertion happens. Therefore, the only
data structures that incur disk storage cost are rule2location,
word2rule, and ruleFreq, and their space breakdown in storage
is shown in Table IV; rule2location occupies most of the
space.

TABLE IV
SPACE BREAKDOWN FOR DIFFERENT DATA STRUCTURES (MB).

Data Structure A B C D E
rule2location 4707 13427 26815 122 192
word2rule 433 1218 2442 15 14
ruleFreq 27 76 151 65 2.1

D. Traversal Operations on Added Content
Adding support for insert and append to direct processing

on compressed data is an important contribution of this work.
Using our support, previous traversal operations [3], [4] can
still work on the updated dataset. Only a post-processing step
is needed to process the newly added content. We implement
a post-processing step for each of the traversal operations
proposed in earlier work [3]. This section reports the measured
time of such traversal operations in our system.

The total execution time consists of two parts: 1) DAG
processing, which is the same as in previous work [3], and 2)
post-processing, which processes the new content in records.
Considering the size of datasets, in this experiment, we ran-
domly insert 10,000,000 records into dataset A, 30,000,000
records into dataset B, 60,000,000 records into dataset C, and
400,000 records into both datasets D and E. Table V reports
the fraction of time spent on post-processing in each of the
six traversal data analytics workloads. The ratio ranges from
3.7% to 30.4%, confirming that with our method, TADOC can
now effectively handle data insertion and append operations.

TABLE V
FRACTION OF TIME SPENT ON POST-PROCESSING.

Fraction of time on each dataset (%)
Application A B C D E AVG
Word Count 23.0 10.3 10.5 13.4 5.5 12.5
Sort 7.4 6.5 8.1 12.8 3.7 7.7
Inverted Index 21.1 13.8 17.1 10.8 4.8 13.5
Term Vector 20.6 9.8 9.1 8.7 4.8 10.6
Sequence Count 17.2 11.0 20.7 29.8 30.4 21.8
Ranked Inverted Index 13.4 7.3 13.4 22.3 29.7 17.2

E. Tradeoff between Performance and Space

1) Different data structures: The tradeoff between time
and space is affected by the choices of data structures. In
Section IV, we discuss two versions of count and extract.
Table VI provides a detailed analysis of time and memory
consumption of each version. In our evaluation, our Approach
2 to extract (Algorithm 1 in Section IV-B) achieves an average
of 9,756× throughput improvement over that of Approach 1
in Section IV-B). Our Approach 2 to count (Algorithm 3

in Section IV-D) achieves an average of 70× throughput
improvement over Approach 1 (the basic count version in
Section IV-D) based on Algorithm 2. However, for extract,
Approach 1 has smaller memory consumption; the reason is
that Approach 2 generates ruleSequence during runtime, which
consumes large memory space.

TABLE VI
THROUGHPUT AND MEMORY CONSUMPTION BREAKDOWN OF DIFFERENT

IMPLEMENTATIONS OF count AND extract.

Throughput (ops/second) Memory (MB)
Operation Dataset Approach 1 Approach 2 Approach 1 Approach 2

extract A 75.7 201851.9 19942 43345
B 78.0 251219.5 45324 111700
C 85.8 251219.5 84176 216706
D 51321.8 2040440.0 493 1469
E 19.9 793624.0 1030 1937

count A 3244.0 324404.8 22725 9190
B 3029.4 359302.3 53170 14762
C 3121.2 359302.3 99874 23056
D 28476.6 42318.7 550 303
E 13318.5 212723.0 1135 467

2) Coarsening: The tradeoff between time and space is
also affected by coarsening. Table VII reports the effects of
coarsening in more depth. Coarsening greatly reduces the
storage size, especially for the data structures related to rules.
Note that coarsening does not decrease the size of the DAG
(the rule with a small size needs to be merged to all its
parents, thereby causing redundancy), but it greatly reduces
the size of the data structures related to rules, thereby reducing
the overall storage size. As the second column in Table VII
shows, the space savings from coarsening is over 62% for
all datasets. An expected effect of coarsening is that as each
leaf node becomes larger, some more time may be needed
for locating a word or offset in the leaf nodes. The other
columns in Table VII report the potential additional speedup
our method could achieve if it does not use coarsening; we
find that coarsening decreases performance, because more
redundant content needs to be scanned after coarsening. Our
implementation chooses to employ coarsening as coarsening
provides a more desirable trade-off between space savings and
speedup.

TABLE VII
STORAGE SAVINGS WITH COARSENING AND THE POTENTIAL SPEEDUP

WHEN COARSENING IS NOT USED.

Space Potential Speedup without Coarsening (×)
dataset Savings search count extract insert append

A 64.0% 3.2 1.3 1.4 2.4 1.1
B 62.5% 4.5 1.0 1.2 2.7 1.2
C 63.1% 4.9 1.0 1.1 2.6 1.3
D 65.1% 1.9 4.4 0.6 0.2 1.1
E 64.0% 3.8 8.5 0.8 2.4 1.1

AVG 63.7% 3.7 3.3 1.3 2.1 1.1

VII. RELATED WORK

To our knowledge, this work is the first to enable effi-
cient support for both random access operations and traversal
operations on hierarchically-compressed data. We overcome
the limitations of TADOC [3], [4] in efficiently supporting
random accesses. We do so by introducing a novel set of
carefully-designed data structures and optimizations to support
random access operations on hierarchically-compressed data.

We further add support for efficiently incorporating new data
into a hierarchically-compressed dataset.

Sequitur is a well-known grammar-based compression al-
gorithm [5], [22], [23]. It is first used for direct processing on
compressed data by TADOC [3], [4]. Besides text analytics,
Sequitur is used for various other purposes, such as improv-
ing data reference locality [24], dynamic hot data stream
prefetching [25], analyzing whole program paths [26], [27],
finding loop patterns in program analysis [28], XML query
processing [29], and comprehension of program traces [30].

Succinct [2] is a high-performance query engine on com-
pressed data that is designed for databases. Our work is or-
thogonal to Succinct in both implementation and applications.
In terms of implementation, Succinct extends indexes and
suffix arrays [31] as basic compression structures, while our
work extends a hierarchical compression method, Sequitur [5].
In terms of applications, Succinct is designed for database
queries while our work is designed for general text analytics.
Importantly, Succinct [2] provides no mechanism to efficiently
incorporate new data into a compressed dataset; our work
provides a new design for efficiently doing so. The results
in Section VI show that our method achieves much higher
performance than Succinct on random access operations, while
keeping TADOC’s distinctive strength in supporting traversal
operations. In contrast, Succinct supports arbitrary substring
and regular expression searches, and broader data types; we
leave such support as future work for our methods. The
compression method used in Succinct is also employed in
other studies [32], [33].

VIII. CONCLUSION

This paper presents a set of new techniques that en-
able efficient random access operations on hierarchically-
compressed data, significantly expanding the capability of
prior works on text analytics on compressed data. Altogether,
our proposed techniques provide the first library that efficiently
supports both traversal and random access operations directly
on compressed text files, and by doing so, remove a major
barrier against practical adoption of direct text analytics on
compressed data.

IX. ACKNOWLEDGMENTS

This work is partially supported by the National Key R&D
Program of China (Grant No. 2017YFB1003103), National
Natural Science Foundation of China (Grant No. 61802412,
61732014, 61722208), and Tsinghua University-Peking Union
Medical College Hospital Initiative Scientific Research Pro-
gram. This material is also based upon work supported by
the National Science Foundation (NSF) under Grant No.
CNS-1717425 and CCF-1703487. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF. Onur Mutlu is supported by ETH Zürich, SRC, and
various industrial partners of the SAFARI Research Group,
including Alibaba, Huawei, Intel, Microsoft, and VMware.
Jidong Zhai, Xipeng Shen, and Xiaoyong Du are the corre-
sponding authors of this paper.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[2] R. Agarwal, A. Khandelwal, and I. Stoica, “Succinct: Enabling queries
on compressed data,” in NSDI, 2015.

[3] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Efficient document
analytics on compressed data: Method, challenges, algorithms, insights,”
PVLDB, 2018.

[4] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Zwift: A Program-
ming Framework for High Performance Text Analytics on Compressed
Data,” in ICS, 2018.

[5] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical struc-
ture in sequences: A linear-time algorithm,” J. Artif. Intell. Res., 1997.

[6] B. Zhao and S. Vogel, “Adaptive parallel sentences mining from web
bilingual news collection,” in ICDM, 2002.

[7] A. B. Bepko, “Public availability or practical obscurity: the debate over
public access to court records on the internet,” NYL Sch. L. Rev., 2004.

[8] P. A. Winn, “Online court records: Balancing judicial accountability and
privacy in an age of electronic information,” Wash. L. Rev., 2004.

[9] S. Bao, J. Chen, L. C. En, R. Ma, and Z. Su, “Method and apparatus
for enhancing webpage browsing,” 2013.

[10] S. Lawrence and C. L. Giles, “Context and page analysis for improved
Web search,” IEEE Internet Computing, 1998.

[11] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. A. Lee, and J. Kubiatowicz, “The Cloud is Not
Enough: Saving IoT from the Cloud,” in HotStorage, 2015.

[12] W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare:
promise and potential,” Health information science and systems, 2014.

[13] R. H. Miller and I. Sim, “Physicians’ use of electronic medical records:
barriers and solutions,” Health affairs, 2004.

[14] P. Jalan, A. K. Jain, and S. Roy, “Identifying Hierarchical Structures in
Sequences on GPU,” in Trustcom/BigDataSE/ISPA, 2015 IEEE, 2015.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets.” HotCloud, 2010.

[16] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed
text indexes,” in Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, 2003.

[17] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees
with applications to text indexing and string matching,” SIAM Journal
on Computing, 2005.

[18] “Gzip,” https://www.gzip.org/, 2019.
[19] “Wikipedia HTML data dumps,” https://dumps.wikimedia.org/enwiki/,

2017.
[20] M. Lichman, “UCI machine learning repository,” http://archive.ics.uci.

edu/ml, 2013.
[21] “Amazon EC2,” https://aws.amazon.com/ec2/, 2019.
[22] C. G. Nevill-Manning, “Inferring sequential structure,” Ph.D. disserta-

tion, University of Waikato, 1996.
[23] C. G. Nevill-Manning and I. H. Witten, “Linear-time, incremental

hierarchy inference for compression,” in DCC, 1997.
[24] T. M. Chilimbi, “Efficient representations and abstractions for quantify-

ing and exploiting data reference locality,” in PLDI, 2001.
[25] T. M. Chilimbi and M. Hirzel, “Dynamic hot data stream prefetching

for general-purpose programs,” in PLDI, 2002.
[26] J. R. Larus, “Whole program paths,” in PLDI, 1999.
[27] J. Law and G. Rothermel, “Whole program path-based dynamic impact

analysis,” in ICSE, 2003.
[28] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder, “Moti-

vation for variable length intervals and hierarchical phase behavior,” in
ISPASS, 2005.

[29] Y. Lin, Y. Zhang, Q. Li, and J. Yang, “Supporting efficient query
processing on compressed XML files,” in Proceedings of the 2005 ACM
symposium on Applied computing, 2005.

[30] N. Walkinshaw, S. Afshan, and P. McMinn, “Using compression algo-
rithms to support the comprehension of program traces,” in Proceedings
of the Eighth International Workshop on Dynamic Analysis, 2010.

[31] G. Navarro, Compact Data Structures: A Practical Approach. Cam-
bridge University Press, 2016.

[32] A. Khandelwal, R. Agarwal, and I. Stoica, “BlowFish: Dynamic Storage-
Performance Tradeoff in Data Stores,” in NSDI, 2016.

[33] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I. Stoica, “ZipG:
A Memory-efficient Graph Store for Interactive Queries,” in SIGMOD,
2017.

